Mrs Environmental scient 489

15P/290/16

	Question Booklet No
(To be filled up by the car	ndidate by blue/black ball-point pen
Roll No.	
Roll No.	
(Write the digits in words)	
Serial No. of OMR Answer Sheet	
Day and Date	(Signature of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 10 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and also Roll No. and OMR sheet No. on the Question Booklet.
- 7. Any changes in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfairmeans.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- **9.** For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect:
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero marks).
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- 12. Deposit only the OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

[उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण-पृष्ठ पर दिये गये हैं।]

Total No. of Printed Pages: 30

No. of Questions: 180

Time: 2 Hours]

[Full Marks : 360

- Note: (1) Attempt as many questions as you can. Each question carries 3 (Three) marks. One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.
 - (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.
 - (3) This Question Booklet comprises two Sections viz., Section-A and Section-B: Section-A: This is compulsory.

Section-B: This contains three Sub-sections having questions of three disciplines viz.,

Life Science (Sub-section B-1)

Physics (Sub-section B-2)

Geology (Sub-section B-3)

A candidate is required to attempt only one from these three Sub-sections.

SECTION - A

BASIC ENVIRONMENTAL SCIENCES

(Compulsory for all)

1.	Natural	resources	are	

(1) Always renewable

(2) Always non-renewable

(3) Both

(4) None

2. Biotic resources are obtained from:

(1) Biosphere

(2) Atmosphere

(3) Environment

(4) Minerals

(1)

P. T. O.

3.	Insectivorous plants are placed in ecos	system	in:
	(1) Trophic level-1	(2)	Trophic level-2
	(3) Trophic level-3	(4)	None of the above
22 <u>1</u> 11		c hetur	een '
4.	In a dense forest competition develop		
	(1) Herbs and herbs	8 48	Shrubs and shrubs
	(3) Trees and trees	(4)	All of the above
5.	Relationship of an epiphyte with its s	uppor	t represents:
•	(1) Amensalism	(2)	Commensalism
	(3) Mutualism	(4)	Competition
<u> </u>	300 M	(9)	9
6.	Biodiversity degradation is due to:	(2)	Population pressure
8	(1) Over exploitation	25 25	. All of the above
	(3) Over use	. (-/	+3
7.	Which of the following statement is	correct	?
	(1) Plant interacts only with plants		
	(2) Animal interacts only with anim	als	
	(3) Microorganism interact only wit	h micr	oorganism
	(4) Plants, animals and microorgani	isms in	iteract with each other
8.	Ecosystem diversity means:		\$.C1
	(1) Species diversity	(2) Genetic diversity
	(3) Landscape diversity	(4) None of the above
	9		
9		12	2) Violence for all life
	(1) Non-violence for all life		1) None of the above
	(3) Both (1) & (2)	(-	TYONE OF THE UPON
10	Apiko movement is for :		
	(1) Wildlife protection	(2	2) Air protection
	(3) Water protection	٠ (٠	4) Mineral protection
	0	2)	

11.	Ch	ipko movement	was	started in			*	8		
	(1)	1962-63	(2)	1972-73		(3)	1982-83	(4)	1992-93	
12.	NIV	VDB stands for :						20		
14.		National wastel	and	s developr	nant k	mar	å.			
		National water				Jour	u	¥	20	
2		National wood		1970 61 91						
		National wome		(1.00 m)		d				
4.5										
13.		vatershed stand		المنتملات مالات	. 1!	. C	t (1	£0.		
		An area bounde				W 10	ater flow			3.
		Two area divide An area of no fl	-	t.c) (A)	W					
	00 00	An area open fr			es		(*)			
	(-/	The special			CD		- A			
14.	Soc	rial forestry is con	nceri	ned to:			88			
	(1)	Welfare of the s	ocie	ty		(2)	Welfare of th	ne land		
	(3)	Welfare of fores	t		150	(4)	None of the	above		
15.	Tau	ıngya system is a	con	nbination o	of:				3. (8 ¹⁸⁾ 600	
	(1)	Tree-crop				(2)	Animal-crop	k	-	F
	\$11.50	Human-crop				(4)	None of the			
	(0)	Tuman crop				(4)	None of the	above		*
16.	Na	tional forest polic	y c o	mmenced	in:		39		i.	
	(1)	1952	(2)	1962		(3)	1972	(4)	1982	
17.	The	e term Biodiversi	tv w	as coined l	bv:		18	*		
	-	Walter Rosen			٠, ٠	(3)	Mc Neely	(4)	Wilson	
	11/	Walter Roselt	(2)	140136		(0)	Wie receiy	(1)	TTISOIT	
18.	Bio	diversity rich in					16			
	(1)	Dry tropical for	est	Ik.		(2)	Moist tropica	al fores	t	
	(3)	Wet tropical for	est	78		(4)	Temperate fo	orest		
	K.				(3)					P.T.O.

19.	Ecology deals with :		$a=a^{k}$
	(1) Biotic factor	(2)	Abiotic factor
	(3) Both	(4)	None of the above
20.	In situ conservation means:		
	(1) Within natural system	(2)	Outside natural system
	(3) Both	(4)	None
21.	Ex situ conservation means :		
	(1) Outside natural system	(2)	within natural system
	(3) Both	(4)	None
22.	Key stone species are :		
	(1) High impact species	(2)	low impact species
	(3) Middle impact species	(4)	None
23.	Umbrella species :		න යාක්රි
	(1) Conservation focus species	(2)	Non focus species
	(3) Both	(4)	None of the above
24.	Biosphere reserve has:		
	(1) Core area	(2)	Non-core area
	(3) Only Buffer area	(4)	All
25.	FAO stand for:		(FC E
	(1) Food and agriculture organization	ı	e
	(2) Fertilizer and agriculture organiza	tion	
	(3) Both		
	(4) None		
26.	Ramsar Convention is for:		*
.20	(1) Wetlands (2) Dry lands	(3)	Water (4) None
			4

27.	Homoeostatis in ecosystem is maintai	ned by :
10	(1) Check and balance	(2) Prey-predator interaction
	(3) Flow of energy	(4) All
28.	In ecosystem, plants parasites are clas	sified as:
	(1) Herbivores (2) Carnivores	(3) Omnivores (4) Reducers
29.	Commensalism is:	#
**	(1) Obligatory	(2) Non-obligatory
	(3) Parasitic	(4) Non-symbiotic
30.	Minimum diversity is observed in :	
97	(1) Climax community	(2) Seral community
82	(3) Pioneers	(4) None of the above
	CHEMIS	STRY
	(Compulso	ry for all)
31.		ies of water is/are greatly influenced by
	hydrogen bonding?	
(8)	(i) Absorption in the visible spectrum	n;
	(ii) Boiling point;	m
	(iii) Density near the freezing point;	
	(iv) Dipole moment	(2) (i) (ii) and (iii)
	(1) (i) and (ii)	(2) (i), (ii) and (iii)
	(3) (iii) and (iv)	(4) (ii) and (iii)
32.	Which of the following molecules/ior	ns have planar structures?
	(i) NH_3 (ii) NO_3^-	(iii) CO_3^{2-} (iv) BF_3
	(1) all four (2) (ii), (iii), (iv)	(3) (iii) and (iv) (4) only (iv)
33.	Which of the following is <i>not</i> a green	house gas ?
10	(1) water vapour	(2) nitrogen
	(3) methane	(4) ozone
1	(5	P.T.O.
5.0		95

34.	Wh	nich of the follow	ing	wave length fall	s in	the infrared regi	on?	
	(1)	100 nm	(2)	400 nm	(3)	700 nm	(4)	1200 nm
35.	Wł	nich element is as	soci	ated with oxyge	n tra	ansport in blood	?	
	(1)	copper	(2)	iron	(3)	vanadium	(4)	chromium
36.	Arı	rhenius equation	rela	ites		2		
	(1)	volume of a rea	l ga:	s to temperature	at c	onstant pressure		
	(2)	rate of a chemic	al r	eaction to tempe	ratu	re		
	(3)	rate constant of	a ch	nemical reaction	to te	mperature		ik .
	(4)	equilibrium cor	ıstar	nt for a chemical	reac	tion to temperat	ure	
37.	Ato	omic orbital		····· .				
	(1)	is a wave functi	on f	or an electron in	an a	atom		E * *
	(2)	gives the traject	ory	of an electron in	an a	itom		
	(3)	is a number wh		is proportional to	o the	e energy of an ele	ectro	on in an atom in
	(4)	is a number what one atomic ra		is proportional t s away from the			find	ing the electron
38.		one mole of an ic					exe	rt a pressure of
	(1)	224 ml	(2)	22.4 L	(3)	8.2 ml	(4)	82 ml
39.	Zn	e standard electric $< Fe < Cu$. If two other by coupling	ele	ctrochemical cell	s ar	e made by coupl	ing	Zn with Cu and
	(1)	Cu in both	(2)	Zn and Fe	(3)	Zn and Cu	(4)	Cu and Fe
40.	The	bond order in I	H_2^+ i	s,		2 2		
*	(1)	0	(2)	0.5	(3)	1	(4)	1.5
				(6)				æ

41.	From each pair give	en below identify th	e ion which is l	arger in size :	
83	[Ca	$[K^+, Co^{3+}] [K^+, Ca^{2-}]$	$+$ $\left[Na^+, F^-\right]$ $\left[C$	$[0^{2-}, S^{2-}]$	**
	(1) Co^{2+} , K^+ , F^- ,	S ²⁻	(2) Co^{3+} , Ca	$^{2+}$, Na^+ , S^{2-}	
	(3) Co^{2+} , Ca^{2+} , F^{-}	S^{2-}	(4) Co^{3+} , K^{+}	, Na^+ , O^{2-}	
42.	The bond angles in	ammonia molecule	are	5	
	(1) 90 degrees	(2) 110 degrees	(3) 115 degre	ees (4) 108 degre	ees
43.	Which one of the for and <i>d</i> -block?	ollowing set contair	ns one element	each from s-block, p	-block
	(1) K, Cs, V	(2) Li, Ru, Bi	(3) Al, F, Fe	(4) Ti, Pd, Se	
44.		on is titrated agains		0.10 N sulphuric aci chloric acid. What v	
	(1) 10 ml	(2) 20 ml	(3) 30 ml	(4) 40 ml	
45.	A Lewis base	ron pair donor ron pair acceptor	ons	n N	
46.	Which one of the hydroxide?	ne following hydro	oxides will di	ssolve in dilute s	odium
	(1) barium hydrox	xide	(2) mangane	ese hydroxide	
	(3) ferrous hydrox	kide	(4) aluminiu	ım hydroxide	
47.	Which is the mo		tion state obs	erved for the lant	hanide
30	(1) -1	(2) +2	(3) +3	(4) +4	ž z
F	DNI CO	(7)	8 e	P.T.O.

48.	statements, pick the correct combina	g formula $NiCl_4^{2-}$. From among the given ation: (i) it is a nickel (II) complex; (ii) it is a signetic; (iv) nickel atom has a coordination
	(1) (i); (ii); (iv)	(2) (ii); (iii); (iv)
	(3) (i); (iii); (iv)	(4) (i); (ii); (iii)
49.	What is the best way to describe the	geometry of XeF ₄ ?
	(1) spherical (2) octahedral	(3) tetrahedral (4) planar
50.	Which one of the following gases solution?	when dissolved in water gives an acidic
*	(1) ozone (2) carbon dioxi	de (3) nitrogen (4) oxygen
51.	Which structure represents 2-methyl-	-2-butene
ż	(1) H ₂ C=CH ₃ CH ₃	(2) C=C CH ₃ CH ₃
	(3) H_3C — C	(4) $H_3C - C - C - C - CH_2$ CH_3
52.	Which of the following is not a macro	omolecular compound ?
	(1) starch (2) cellulose	(3) haemoglobin (4) sucrose
53.	The bond angles in cyclohexane are co	lose to:
	(1) 120° (2) 90°	(3) 109° (4) 180°
54.	Which of the following compounds w	rill undergo Cannizaro reaction?
	(1) acetaldehyde	(2) o-chlorobenzaldehyde
	(3) 1-chloro-2-methylpropanal	(4) 2-chloropropanal

55.	How many stereo	oisomers are poss	sible for butane-2,3-d	icarboxylic acid?	
	(1) 1	(2) 2	(3) 3	(4) 4	
56.	Which of the follo	owing compound	ls does not contain a	C = O group?	
	(1) acetic acid		(2) formaldel	nyde	
	(3) cyclopentano	one	(4) furan		
57.	Which of the follo	owing compound	ds has the most acidic	: H atom ?	
35	(1) ethane	(2) ethylene	(3) acetylene	(4) benzene	
58.	What will be the	major product w	hen nitrobenzene is r	nitrated?	×
	(1) o-dinitrobenz	zene	(2) <i>m</i> -dinitrol	oenzene	
	(3) <i>p</i> -nitrobenze	ne	(4) 1,3, 5-trin	trobenzene	
59.	How many mone	onitro derivatives	s are possible for o-di	bromobenzene?	
	(1) 1	(2) 2	(3) 3	(4) 4	
60.	Which of the foll	owing is <i>true</i> of	S_N 2 reaction?		
	(1) first order ki	netics and invers	ion of configuration		
	(2) first order ki	netics and racem	ization		
	(3) second order	kinetics and rete	ention of configuration	on	
	(4) second order	kinetics and inv	ersion of configuration	on	
61.	Which nucleus is	s useful for dating	g of archaeological sa	mples?	
	(1) ^{13}C	(2) ^{14}C	(3) ^{14}N	(4) ^{15}N	
62.	An element crys	stallizes in a BCC	Clattice. How many	atoms are there per	unit
į.	(1) 1	(2) 2	(3) 3	(4) 4	
10 20			(0)	(6)	P.T.O.

	(1) derived from theoretical calculation	ns
	(2) deduced from certain axioms (an a	xiom is a self-evident assertion)
	(3) based on experience	
	(4) given to us by philosophers	
64.	For which one among the followin represent an enthalpy of formation?	g reactions does ΔH° of the reaction
	(1) $2H_2(g) + C(s) \rightarrow CH_4(g)$	7
	(2) $2NO_2(g) \to N_2O_4(g)$	20
	(3) $2N_2(g) + 3O_2(g) \rightarrow 2NO_2(g) + 2NO_2(g)$	O(g)
	(4) $C_2H_2(g) + H_2(g) \rightarrow C_2H_4(g)$	ψ ····································
65.	Other things being equal, how will following system change if the volume	the rate of the forward reaction in the of the reaction vessel is halved?
	$CO(g) + Cl_2($	$g) = COCl_2(g)$
	(1) the rate will decrease to 50% of the	original value
	(2) the rate will decrease to 25% of the	original value
	(3) the rate will be doubled	
ē	(4) the rate will increase four times	9
66.	What is the pH of a 10^{-2} M solution of	sodium hydroxide?
	(1) -2 (2) 2	(3) 12 (4) 7
67.	What happens to the pH when a sm solution of NH_4Cl ?	nall amount of NH ₄ Cl is added to 1M
	(1) pH decreases	(2) pH remains at 7
898	(3) pH increases	(4) pH does not change
	(10)	

6	8. How many degrees of	freedom ar	e there	at the b	oiling p	oint of w	later 2	
		one		3) two			three	*1
69	 Steady state approximassumption: 	nation for	the rea	iction	A>			ikes the
	(1) $d[C]/dt = -d[A]/dt$ (3) $d[A]/dt = 0$				/dt = 0 $/dt = 0$		ef.	2
70	 Sulphur dioxide dissolvions. In this reaction, su 	es in wate lphur dioxi	r to pro de mole	duce h cules a	ydroxor ire	nium ion	s and s	ulphite
	(1) hydrolysed				roportio			
15	(3) oxidised			redu	- A	0 0		
71.	In which pair do the two room temperature)?	compound	ds have	the sar	ne type	of crysta	ıl struci	ture (at
Ti.	(1) (NaCl, KCl)		(2)	(NaC	l, CsCl)			
	(3) (KCl, CsCl)		73 1000	(RbCl	- N		<i>t</i> :	
72.	The colour of aqueou by	s solutions	s of po	otassiui	m perm	nangana	te is o	caused
	(1) <i>d-d</i> transitions		(2)	charg	e transfe	er transit	ions	
	(3) vibrational transition	S				sorption		i.
73.	Identify the molecule/ion the chelate effect.	n whose pro	eparatio	n is ma	de facil	e by the	operat	ion of
	(1) $Cu(pyridine)_6^{2+}$		(2)	Fe(NF	$(l_3)_4 C l_2$			Ą
5%	(3) Ni(dimethylgyoxima	te) ₂		Ni(CC	-			
74.	Which salt upon heating p	oroduces ox	kygen ?		4			
	(1) potassium oxide		(2)	potassi	um chlo	rate		
	(3) potassium chloride	:	(4)	potassi	um carb	onate		
	r.	(11	1)	6	¥		F	P.T.O.

(1) azide

75. Which ligand can lead to linkage isomers?

(2) nitrite

76.	What is the oxidation state of iron in $K[Co(CO)_4]$?
, 0.	(1) 2 (2) 0 (3) -1 (4) -2
77.	Which one among the following statements regarding entropy change and
si	 it is possible to have same sign for both enthalpy change and entropy change endothermic reactions have positive enthalpy change free energy change at a given temperature depends on both entropy change
	and enthalpy change (4) both entropy and enthalpy are energy quantities
78	 Which one among the following statements regarding the atomic orbitals of the hydrogen atom is <i>false</i>? (1) 3p and 3d orbitals have different energies (2) angular momentum of the electron is zero when it occupies the 2s orbital (3) the degeneracy corresponding to principal quantum number 3 is nine (4) the 1s orbital of He⁺ ion can be derived from the 1s orbital of H atom
79	(1) zero (2) one (3) two (4) four
8	adsorbate substance (such as acetic acid), and if one assume that the system perfectly obeys Langmuir isotherm, then the fraction of the surface of adsorbant covered by the adsorbate molecules will
	(4) increase with concentration up to a point and then remain constant
	(12)

(4) nitrate

(3) oxalate

81.	W	ittig reaction is	usefu	ıl for	******		320
	(1)	(1) converting an alkene to a carboxylic acid					
	(2)	(2) converting an aldehyde to an alkene					
	(3)	oxidising seco	ondar	y alcohols	W.		
	(4)	resolution of	optica	l isomers			
82.	W	nich reaction is	most	convenient to	convert aniline to be	enzonitrile?	
	(1)	Friedel-Crafts	réact	ion		10	
	(2)	Diels-Alder re	action	n			
	(3)	Sandmeyer re	actior	ì			
	(4)	Schmidt reacti	on				
83.	Wh	ich of the follo	wing:	statements abo	ut chirality is(are) co	orrect ?	
٢.	(i)	All L-aminoac			e	10 80	
	(ii)	All molecules	with o	one asymmetric	c carbon atom are ch	hiral	
18	(iii) Chiral molecules always have one or more asymmetric carbon atoms						
	(iv)	All molecules	with t	wo asymmetri	c carbon atoms are c	chiral	ir R
	\$205023	only (ii)		(i) and (ii)	,88		d (iv)
84.	Con	nplete the sente	ence :	Werner propos	sed his theory to exp	olain	
	(1)	bonding in trar	rsition	n metal comple	xes		
	(2)	bonding in ben	zene			2	*** ***
	(3)	structure of sili	cates				
	(4)	optical activity	of tar	taric acid	9		18
85.	Whi	ch of the follow	ing n	nolecules does :	not satisfy the Huck	sel 4n + 2 rule ?	
	88	benzene			(3) cyclopentane	(4) chloroben	zene
20			36	(13)		F	T.O.

86.	Which of the following is the <i>correct</i> re ethylene?	epresentation of the π -bonding orbital of			
	(1) 3 (2) 3 (3)	(3) (4)			
87.	$H_3N^+ - CH_2 - COO^+$ is an example of	:			
	(1) carbocation (2) zwitter ion	190 and the second of the seco			
88.	 (1) only sp hybridised carbon atoms (2) only sp² hybridised carbon atoms 				
	 (3) both sp² and sp³ hybridised carbon atoms (4) both sp and sp² hybridised carbon atoms 				
89.		8			
90.	 What product will be obtained whe reagent, followed by hydrolysis with v 	en a ketone is treated with a Grignard water?	£		
	(1) a carboxylic acid	(2) a secondary alcohol			
	(3) a tertiary alcohol	(4) an alkane			
	SECTION - B				
	LIFE SCIENCE (S	ub-section B-1)			
	(Optio	nai)			
91.	1. A fast primary block to polyspermy ir	n sea urchin egg is brought about by :			
	(1) Depolarization of egg plasma mer	mbrane			
	(2) Cortical reaction				
	(3) Acrosomal reaction	: *			
	(4) Inositol phospholipid cell signalli	ng pathway			
	(14	4)			

£. :

92.	Which of the following is <i>not</i> applicable for HOX genes in vertebrates?
	(1) specify pattern formation
	(2) have four paralogous groups
	(3) mutations in any of these genes cause delation of a given region of the body
	(4) contain conserved homeobox
93.	The dorsal most vegetal region of an amphibian blastula, capable of inducing the organizer, is called as:
	(1) Hensen's node (2) Primary organizer
	(3) Nieuwkoop centre (4) Koller's sickel
94.	The expansion of outer layer of cells covering the entire embryo during gastrulation is known as:
	(1) Imboly (2) Evagination (3) Involution (4) Epiboly
95.	Insect eggs have moderate yolk and syncytial cleavage divisions occur in the periphery. Such eggs are considered as:
	(1) Centrolecithal (2) Telolecithal (3) Alecithal (4) Mesolecithal
96.	A dedifferentiation followed by repatterning during regeneration is termed as:
	(1) Morphallaxis (2) Epimorphosis
	(3) Compensatory regeneration (4) Stem cell mediated regeneration
97.	In the nervous system of nonchordates, the commisures are those nerves which connect:
	(1) two equal sized dissimilar ganglia
	(2) one small and one large dissimilar ganglia
	(3) two similar ganglia
	(4) two main nerves
	(15) P.T.O.

98.	Contractile vacuole of amoeba is analogous to:				
	(1)	Sebaceous glands of mammals			
	(2)	paragastric cavity of scypha			
	(3)	gills of fish		£	
	(4)	uriniferous tubules of kidney of ver	tebr	ates	
99.	Ve	rtebrate with biconcave centra, are kr	owi	n as :	
	(1)	Procoelous	(2)	Amphicoelous	
	(3)	Opisthocoelous	(4)	Displospondyly	
100.	Ne	matocytes found in Cnidarians have	:		
	(1)	nutritive function	(2)	sexual function	
	(3)	defensive function	(4)	endomembrane function	
101.	The	e specific feature of order Diptera is :			
	(1)	one pair of wing and one pair of hal	tere	S	
	(2)	two pairs of wings		w Tg	
	(3)	one pair of halteres			
	(4)	two pairs of wings and one pair of h	alte	res	
102.	The	e electron transport chain for cellular	resp	piration is located :	
	(1)	on inner membrane of mitochondria	1	s - 18	
	(2)	in the matrix of mitochondria		*	
	(3)	on the luminal face of endoplasmic	retic	ulum membrane	
	(4)	on nuclear membrane	9	8 3 0 5	

103. Bile is produced in:

- (1) liver cells, stored in gall bladder and secreted into the duodenum to help fat emulsification
- (2) gall bladder and secreted into the lower part of stomach for fat and protein digestions
- (3) islets of Langerhans and secreted in large intestine for fat absorption
- (4) spleen and secreted into the stomach

104. Glomerular filteration rate refers to:

- (1) volume of blood plasma delivered to the kidney per unit time
- (2) volume of fluid filtered from glomerular capillaries into Bowman's capsule per unit time
- (3) volume of fluid filtered from Bowman's capsule into glomerulus per unit time
- (4) volume of blood that is cleared of water per unit time

105. Carbondioxide transported from the body cells back to lung mainly as:

- (1) bicarbonate formed when CO_2 released from Krebs cycle combines with H_2O by the enzyme carbonic anhydrase of RBC
- (2) CO2 gas released from Krebs cycle
- (3) Oxyhemoglobin formed by enzyme carbonic anhydrase in RBC

(17)

(4) bicarbonate as oxyhemoglobin

106. Colour blindness results from:

(1) absence of rods

(2) absence of cones

(3) absence of sensory cilia

(4) absence of retina

P.T.O.

107. Synaptic fatigue is due to:

	(1) release of extra adrenaline			
	(2) release of additional acetylcholine			
	(3) exhaustion of neurotransmitter			
¥	(4) exhaustion of water			
108.	TSH is synthesized and secreted by:			
500	(1) Neural lobe of pituitary ((2)	Pars intermedia of pituita	rv
			Pars proximalis of pituitar	-
109.	Ovarian Follicle Atresia is a degenerative	e pro	ocess whereby :	
	(1) mature eggs are lost through ovulation	on	7000 30	
	(2) single dominant follicle becomes a con	rpu	is luteum	
	(3) immature ovarian follicles degenerate	e an	nd reabsorbed	A1 5
(94)	(4) mature oocyte degenerates		w į	1
110.	The zymogen chymotrypsin is converted	to a	active chymotrypsin by:	7)
	(1) binding of a necessary metal ion		કર્તક હતું. 	
	(2) reduction of disulfide bond		e de la companya de La companya de la co	
	(3) proteolytic cleavage		R	
	(4) phosphorylation of an amino acid side	le ch	nain whi	
111.	If adrenal cortex was producing high leve to have:	els o	of aldosterone, it would can	use urine
	(1) low Na^+ and high K^+ concentrations	s	a 'a .	
	(2) high Na^+ and low K^+ concentrations	s	1	
	(3) high Na^+ and high K^+ concentration.	\S		
	(4) low Na^+ and low K^+ concentrations		iže:	
	(18)			

112	. 1 t	n response to a stimulus, if the mem han the resting potential, the membrar	brar e is	ne s	e potential becomes more negative aid to be:
	, (1) polarized	(2))	hyperpolarized
	(3) unpolarized	(4)	ì	depolarized
113.	T	he first step in the catabolism of most a	mir	nc	acids is :
	(1) removal of carboxylate groups			II
	(2	enzymatic hydrolysis of peptide bor	ıds		
	(3) removal of the amino group			
	(4) catabolism of carbon skeleton			
114.	Er	win Chargaff studied DNA from vario	us c	or	ganisms and demonstrated that :
	(1)	DNA is the genetic material			
		RNA is transcribed from DNA			
	(3)	the amount of adenine in a given org is equal to cytosine	anis	sn	n is equal to thymine and guanine
	(4)	the double helix is held together by h	ydro	oį	gen bonding between the bases
115.	The	e final step in the process of cellular ain. What best describes the first step in	res	sp e e	piration is the electron transport electron transport chain?
65	(1)	Energized electrons from NADH ar proteins	d F	A	DH ₂ activate electron transport
	(2)	Hydrogen ions diffuse through the or	iter	n	nitochondrial membrane
	(3)	Electron from NADH and FADH ₂ bo molecules	nd v	W	ith hydrogen ions to form water
	(4)	Electrons in the inner membrane are e	nerg	gi	zed by the sun
		(19)			P.T.O.

116.	Wernicke-Korsakof	f syndrome is cau	ised in alcoholics due to severe deficienc	:y
	of: (1) Retinol	(2) Tochoferol	(3) Cholecalciferol (4) Thiamine	
117.	When mammalian genomic DNA. Thi	s is because :	essed in bacteria, cDNA is used rather the	an
	(1) most of the eul	caryotic gene pror	moters do not function in bacteria	
	(2) cDNA is easier	to clone than gen	nomic DNA	3
	(3) the entire gend	omic sequence is d	lifficult to clone	20
	(4) prokaryotes of protein	annot remove in	trons to make the functional mammali	ian
118.	If genetic code co	nsisted four bases r of amino acid co	s as codon in place of three bases, then ded would have been:	the
	(1) 256	(2) 64	(3) 16 (4) 20	
119.	All the reactions of two molecules	starting from a sir of pyruvic acid ar	ngle molecule of glucose upto the formal e accomplished in :	tion
	(1) absence of O ₂	2	(2) presence of O_2	
	(3) presence of n		(4) mitochondria	
120	. The palindromic	sequence recogniz	zed by the restriction endonuclease EcoR	l is:
	(1) GAAAAG	(2) GAATTC	(3) GAAGAA (4) CTTTTC	
ři.	8	PHYSICS (S	sub-section B-2)	
		(Op	otional)	
12	1. Formation of dro	plets water and n	nercury are due to the phenomenon of :	
	(1) Surface tens	on	(2) Archimedes Principle	
	(3) Pascal Law		(4) None of these	
			(20)	
		50		

- 122. Young's modulus 'Y' modulus of rigidity ' η ' and Poisson's ratio ' σ ' are related as :
 - (1) $Y = 2\eta(1 + \sigma)$

(2) $\sigma = \frac{2Y}{(1+\eta)}$

 $(3) \quad \frac{Y}{\sigma} = 2(1+\eta)$

 $(4) \quad \eta = \frac{2Y}{(1+\sigma)}$

- 123. Zener diode is used in:
 - (1) Amplifier

(2) Oscillator

(3) Voltage regulation

- (4) Modulation
- **24**. The equation $\nabla \times \vec{B} = \mu_0 \vec{J}$ represents:
 - (1) Faraday's law

(2) Ampere's law

(3) Gauss's law

- (4) Ohm's law
- A virtual image larger than the object can be produced by:
- (1) Concave mirror

(2) Convex mirror

(3) Plane mirror

- (4) Concave lens
- 26. Rutherford's alpha scattering experiment lead to the discovery of:
 - (1) protons

(2) electrons

(3) atomic nucleus

- (4) None of these
- . If angular momentum of a system is constant, which of the following will be zero?
 - (1) force

(2) torque

(3) linear impulse

(4) linear momentum

	25	1.0
128.	In Bernoulli's theorem which of the following	owing is conserved?
	(1) Angular momentum	(2) Linear momentum
en	(3) Energy	(4) None of these
129.	(1) increases with area(3) increases with temperature	(2) decreases with temperature (4) decreases with area
130.	The displacement of a particle in an si	mple harmonic motion in one time period
	is: (1) A (2) 2A	(3) 4A (4) zero
131	X-rays can be deflected by:(1) an electric field(3) a gravitational field	(2) a magnetic field(4) None of these
132	2. The photo-electric effect can be under	rstood on:
(A. () T e>-:	(1) the electromagnetic theory of liq	•
	(2) the special theory of relativity	*
	(3) the quantum theory of light	ž.
	(4) None of the above	
13	33. The energy of Sun is produced by :(1) gravitation (2) oxidation	(3) nuclear fusion (4) nuclear fission
19	34. Which one is invariant under a Gali	lion transformation?
	(1) Displacement (2) Velocity	(3) Force (4) Momentum
1:	35. Primary cosmic rays are composed	of very energetic:
	(1) electrons (2) mesons	(3) protons (4) neutrons
	39	22)

136.	Fission of nucleus is possible only condition:	when its mass number 'A' satisfy the
	(1) $A > 15$ (2) $A < 15$	(3) $A > 85$ (4) $A < 85$
137.	The most important characteristics of l	aser is :
	(1) polarization	(2) coherence
	(3) high intensity	(4) directionality
38.	The direction of propagation of electro	magnetic wave is given by
	(1) Vector \vec{E}	(2) Vector \overrightarrow{B}
	(3) Poynting vector \overrightarrow{S}	(4) Vector \overrightarrow{H}
39.	Suppose a magnetic monopole exis equations will be modified:	ts, which of the following Maxwell's
	$(1) \nabla. \overrightarrow{E} = \rho / \in_{o}$	$(2) \nabla . \overrightarrow{B} = 0$
	(3) $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$	(4) $\nabla \times \vec{B} = \mu_o \vec{J} + \mu_o \in_o \frac{\partial \vec{E}}{\partial t}$
40.	Working of thermopile is based upon:	
	(1) Peltier effect	(2) Seeback effect
	(3) Thomson effect	(4) Hall effect
11.	In the manufacture of electronic device because:	ces silicon is preferred to Germanium
	(1) Silicon is cheaper than Germanium	
	(2) Silicon is more compact than Germa	nium
	(3) The leakage current is less in silicon	
	(4) Silicon has a better appearance than	
E.		Committee
	(23)	DTA

142.	In which of the following configuration highest?	on of a transistor the voltage gain is
	(1) Common emitter	(2) Common base
	(3) Common collector	(4) None of the above
143.	The angle of incidence at which the completely polarized as:	light reflected from water would be
	(1) 53° (2) 45°	(3) 40° (4) 48.7°
144.	A ring, a disc, a solid sphere and spher respectively. The body which has the central axis is:	ical shell have the same mass and radius e highest moment of inertia about the
	237	(2) ring
	(1) disc	(4) spherical shell
	(3) solid sphere	
145.	The zeroth law of thermodynamics sho	ows the existence of:
	(1) Internal energy	(2) Pressure
	(3) Temperature	(4) Entropy
146.	The base of a transistor is doped:	
	(1) lightly	(2) heavily
	(3) moderate	(4) None of the above
147.	(3.17%)	n transverse and longitudinal waves b
	(1) Interference	(2) Diffraction
	(3) Reflection	(4) Polarization
148	. In a single slit diffraction pattern, for separation between central maximum	or a slit width 'd' and wavelength ' λ ', the and first minimum is :
	(1) $\theta = \lambda/d$ (2) $\lambda/2d$	(3) $\theta = \lambda/4d$ (4) $\theta = \pi/2$
	(24	4)

Interference may be seen using two independent:					
(1) sodium lamps	(2)	fluorescent tub	es		
(3) lasers	(4)	mercury lamps			
Gravitational field is:		**			
(1) Non-conservative	(2)	Conservative		8	
(3) Electromagnetic	(4)	Magnetic	60		
GEOLOGY (Sub-section B-3)					
(Option	al)				
The crust and upper part mantle together constitute:					
(1) Troposphere	(2)	Asthenosphere			
(3) Lithosphere	(4)	Biosphere			
Long, narrow and sinuous ridges of sar ground moraines are :	nds a	nd gravels situa	ted i	n the middle of	
(1) Drumlins (2) Crag and tail	(3)	Eskers	(4)	Kames	
Which one among the following is a feature produced by wind?					
(1) Drumlins (2) Loess	(3)	Delta	(4)	Canyons	
'Conorad discontinuity' lies between:				69%	
(1) Crust and mantle	(2)	Sial and sima			
(3) Sima and mantle	(4)	Mantle and cor	e		
Newly deposited clays have porosity:	B			*	
(1) up to 5%	(2)	up to 100%		10	
(3) up to 70%	(4)	up to 30%	á	·	
(25)	i			P.T.O.	
	(1) sodium lamps (3) lasers Gravitational field is: (1) Non-conservative (3) Electromagnetic GEOLOGY (Sub- (Option The crust and upper part mantle togeth (1) Troposphere (3) Lithosphere Long, narrow and sinuous ridges of sar ground moraines are: (1) Drumlins (2) Crag and tail Which one among the following is a feat (1) Drumlins (2) Loess 'Conorad discontinuity' lies between: (1) Crust and mantle (3) Sima and mantle Newly deposited clays have porosity: (1) up to 5% (3) up to 70%	(1) sodium lamps (2) (3) lasers (4) Gravitational field is: (1) Non-conservative (2) (3) Electromagnetic (4) GEOLOGY (Sub-section (Optional)) The crust and upper part mantle together conservative (1) Troposphere (2) (3) Lithosphere (4) Long, narrow and sinuous ridges of sands a ground moraines are: (1) Drumlins (2) Crag and tail (3) Which one among the following is a feature (1) Drumlins (2) Loess (3) 'Conorad discontinuity' lies between: (1) Crust and mantle (2) (3) Sima and mantle (4) Newly deposited clays have porosity: (1) up to 5% (2) (3) up to 70% (4)	(1) sodium lamps (2) fluorescent tube (3) lasers (4) mercury lamps Gravitational field is: (1) Non-conservative (2) Conservative (3) Electromagnetic (4) Magnetic GEOLOGY (Sub-section B-3) (Optional) The crust and upper part mantle together constitute: (1) Troposphere (2) Asthenosphere (3) Lithosphere (4) Biosphere Long, narrow and sinuous ridges of sands and gravels situal ground moraines are: (1) Drumlins (2) Crag and tail (3) Eskers Which one among the following is a feature produced by with the control of	(1) sodium lamps (2) fluorescent tubes (3) lasers (4) mercury lamps Gravitational field is: (1) Non-conservative (2) Conservative (3) Electromagnetic (4) Magnetic GEOLOGY (Sub-section B-3) (Optional) The crust and upper part mantle together constitute: (1) Troposphere (2) Asthenosphere (3) Lithosphere (4) Biosphere Long, narrow and sinuous ridges of sands and gravels situated i ground moraines are: (1) Drumlins (2) Crag and tail (3) Eskers (4) Which one among the following is a feature produced by wind? (1) Drumlins (2) Loess (3) Delta (4) 'Conorad discontinuity' lies between: (1) Crust and mantle (2) Sial and sima (3) Sima and mantle (4) Mantle and core Newly deposited clays have porosity: (1) up to 5% (2) up to 100% (3) up to 70% (4) up to 30%	

156.	Debris flows produ	ice:				v
	(1) Clast supported texture					
	(2) Grain-supported texture					
	(3) Matrix-support	ted texture				
颓	(4) Cement supported texture					
157.	Granophyres are h	ypabyssal equiva	lent of :			
	(1) Basalt	(2) Granite	(3)	Gabbro	(4)	Diorite
158.	Chalcopyrite is ore	mineral of :				
	(1) Aluminium	(2) Copper	(3)	Iron	(4)	Silver
159.	The chief ore of Alu	uminium is :				
	(1) Pyrolucite	(2) Sphalerite	(3)	Bauxite	(4)	Chalcopyrite
160.	The most importan	t ore of lead is :				
	(1) Rutile		(2)	Psilomelane		
	(3) Sphalerite		(4)	Galena	9	
161.	Triassic begins with first appearance of:					
	(1) Olenus		(2)	Nautilus	÷.	
	(3) Otoceras woodw	ardi	(4)	Macrocephalites		
162.	Find odd one out:					
	(1) Period	(2) Zone	(3)	Age	(4)	Epoch
163.	The close of Cretaceous marks the extinction of					8
	(1) Bivalves		(2)	Trilobites		
9	(3) Corals	* 19	(4)	Dinosaurs		
	96			¥7		929

64.	Cephalopods with com	iplex suture are :		360	75	
	(1) Ceratites		(2)	Nautilus		
	(3) Goniatites		(4)	Ammonites		
165.	Which one is <i>not</i> a bive	alve?		¥ii		4
	(1) Nautilus (2)) Lima	(3)	Nucula	(4)	Trigonia
166.	Abrupt termination of	strata marks the	pres	ence of :		
*	(1) Fold and Joint		(2)	Joint		50
	(3) Fold		(4)	Fault		
167.	The structure having o	dip towards a com	mo	n central point fr	om a	ll sides is:
	(1) Basin (2) fault	(3)	Dome	(4)	Joint
168.	Joints developed perp	endicular to the fo	old a	axis are termed a	s:	
4	(1) Columnar joints		(2)	A SECURITY OF THE PROPERTY OF	30	e e
	(3) Extension joints	÷	(4)	Cross joints		
169.	Which one is <i>not</i> a po	tash felspar ?				♥ ≋
100.		2) Oligoclage	(3)	Sanidine	(4)	Microcline
170.	Diamond crystallizes	in:		8	·	*
	(1) Orthorhombic sy	stem	(2) Tetragonal sys	tem	
	(3) Cubic system	e e	(4) Monoclinic sys	stem	39
171.	Which of the following	ng system has all o	close	ed forms?		
	*	(2) Cubic) Trigonal	(4)	Monoclinic
172.	Which of the following	ng has 3 axes of 4-	-fold	l symmetry ?		
	ž.	(2) Gypsum		3) Galena	(4)	Rutile
		(27)			P.T.O

173.	Texture in which phenocrysts are embedded in fine grained ground mass is			
	(1) Perthite		(2) Porphyritic	*73
	(3) Graphic textu	re	(4) Seriate texture	2
174.	Peridotite is:			
	(1) An amphibole	2	(2) A pyroxene	
0.00	(3) An acid igneo	us rock	(4) An ultra mafic	rock
175.	Lavas containing numerous gas cavities of irregular shape are:			
	(1) Scoria	(2) Pumice	(3) Amygdales	(4) Ignimbrites
176.	Fibrous variety of	quartz is :		4 A
	(1) Flint	(2) Chalcedony	(3) Chert	(4) Amethyst
177.	Which of the following is <i>not</i> a magnetic mineral?			
	(1) Pyrrhotite	(2) Hematite	(3) Orthoclase	(4) Magnetite
178.	The native mineral	having hackly fract	ure is :	
	(1) Sulphur	(2) Copper	(3) Gold	(4) Borax
179.	Which of the follow	ving properties is <i>no</i>	t observed under ord	dinary light?
	(1) Colour		(2) Inclusions	,
	(3) Pleochroism		(4) Refractive Inde	ex
180.	The Lower Gondw	ana rocks are of	age.	e
	(1) Cambrian	(2) Permian	(3) Jurassic	(4) Triassic

r Ind.

अभ्यर्थियों के लिए निर्देश

(इस पुरितका के प्रथम आवरण-पृष्ट पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली। काली बाल-प्वाइंट पेन से ही लिखे

- 1. प्रश्न पुस्तिका मिलने के 10 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और को प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष निरीक्षक को देक सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में *लिफाफा रहित प्रवेश-पत्र के अतिरिक्त*, लिखा या सादा कोई भी खुला कागर साथ में न लायें।
- 3. उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नह विया जायेगा। केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- 4. अपना **अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से** निर्धारित स्थान पर लिखें।
- 5. उत्तर-पत्र के प्रथम पृष्ट पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्त को गाढ़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्ब उचित स्थानों पर लिखें।
- 6. ओ॰ एम॰ आर॰ पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथ प्रश्न-पुस्तिका पर अनुक्रमांक संख्या और ओ॰ एम॰ आर॰ पत्र संख्या की प्रविष्टियों में उपरिलेखन की अनुमति नहीं है।
- 7. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार बाल-प्वाइंट पेन से गाढ़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्थाही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ कार्य के लिये इस पुस्तिका के मुखपृष्ठ के अंदर वाला पृष्ठ तथा अंतिम खाली पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल ओ० एम० आर० उत्तर-पत्र ही परीक्षा भवन में जमा करें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का / की भागी होगा / होगी।